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DeepSeek-R1 incentivizes reasoning in LLMs 
through reinforcement learning

General reasoning represents a long-standing and formidable challenge in artificial 
intelligence (AI). Recent breakthroughs, exemplified by large language models 
(LLMs)1,2 and chain-of-thought (CoT) prompting3, have achieved considerable 
success on foundational reasoning tasks. However, this success is heavily contingent 
on extensive human-annotated demonstrations and the capabilities of models are 
still insufficient for more complex problems. Here we show that the reasoning 
abilities of LLMs can be incentivized through pure reinforcement learning (RL), 
obviating the need for human-labelled reasoning trajectories. The proposed RL 
framework facilitates the emergent development of advanced reasoning patterns, 
such as self-reflection, verification and dynamic strategy adaptation. Consequently, 
the trained model achieves superior performance on verifiable tasks such as 
mathematics, coding competitions and STEM fields, surpassing its counterparts 
trained through conventional supervised learning on human demonstrations. 
Moreover, the emergent reasoning patterns exhibited by these large-scale models 
can be systematically used to guide and enhance the reasoning capabilities of 
smaller models.

Reasoning capability, the cornerstone of human intelligence, enables 
complex cognitive tasks ranging from mathematical problem-solving 
to logical deduction and programming. Recent advances in AI have 
demonstrated that LLMs can exhibit emergent behaviours, including 
reasoning abilities, when scaled to a sufficient size4,5. However, achiev-
ing such capabilities in pre-training typically demands substantial 
computational resources. In parallel, a complementary line of research 
has demonstrated that LLMs can be effectively augmented through CoT 
prompting. This technique, which involves either providing carefully 
designed few-shot examples or using minimalistic prompts such as 
“Let’s think step by step”3,6, enables models to produce intermediate 
reasoning steps, thereby substantially enhancing their performance 
on complex tasks. Similarly, further performance gains have been 
observed when models learn high-quality, multistep reasoning tra-
jectories during the post-training phase2,7. Despite their effectiveness, 
these approaches exhibit notable limitations. Their dependence on 
human-annotated reasoning traces slows scalability and introduces 
cognitive biases. Furthermore, by constraining models to replicate 
human thought processes, their performance is inherently capped 
by the human-provided exemplars, which prevents the exploration 
of superior, non-human-like reasoning pathways.

To tackle these issues, we aim to explore the potential of LLMs for 
developing reasoning abilities through self-evolution in a RL frame-
work, with minimal reliance on human labelling efforts. Specifically, 
we build on DeepSeek-V3 Base8 and use Group Relative Policy Optimi-
zation (GRPO)9 as our RL framework. The reward signal is only based 
on the correctness of final predictions against ground-truth answers, 
without imposing constraints on the reasoning process itself. Nota-
bly, we bypass the conventional supervised fine-tuning (SFT) phase 
before RL training. This design choice originates from our hypothesis 
that human-defined reasoning patterns may limit model exploration, 

whereas unrestricted RL training can better incentivize the emergence 
of new reasoning capabilities in LLMs. Through this process, detailed 
in the next section, our model (referred to as DeepSeek-R1-Zero) natu-
rally developed diverse and sophisticated reasoning behaviours. To 
solve reasoning problems, the model exhibits a tendency to generate 
longer responses, incorporating verification, reflection and the explo-
ration of alternative approaches within each response. Although we 
do not explicitly teach the model how to reason, it successfully learns 
improved reasoning strategies through RL.

Although DeepSeek-R1-Zero demonstrates excellent reasoning capa-
bilities, it faces challenges such as poor readability and language mixing, 
occasionally combining English and Chinese in a single CoT response. 
Furthermore, the rule-based RL training stage of DeepSeek-R1-Zero is 
narrowly focused on reasoning tasks, resulting in limited performance 
in broader areas such as writing and open-domain question answering. 
To address these challenges, we introduce DeepSeek-R1, a model trained 
through a multistage learning framework that integrates rejection sam-
pling, RL and supervised fine-tuning, detailed in the ‘DeepSeek-R1’ sec-
tion. This training pipeline enables DeepSeek-R1 to inherit the reasoning 
capabilities of its predecessor, DeepSeek-R1-Zero, while aligning model 
behaviour with human preferences through further non-reasoning data.

To enable broader access to powerful AI at a lower energy cost, we 
have distilled several smaller models and made them publicly available. 
These distilled models exhibit strong reasoning capabilities, surpassing 
the performance of their original instruction-tuned counterparts. We 
believe that these instruction-tuned versions will also greatly contribute 
to the research community by providing a valuable resource for under-
standing the mechanisms underlying long CoT reasoning models and 
for promoting the development of more powerful reasoning models. 
We release DeepSeek-R1-Zero, DeepSeek-R1, data samples and distilled 
models to the public as described in the ‘Code availability’ section.
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DeepSeek-R1-Zero
To implement large-scale RL of DeepSeek-R1-Zero, we use a highly 
efficient RL pipeline. Specifically, we use GRPO9 as our RL algorithm, 
described in Methods section ‘GRPO’. Furthermore, we use a rule-based 
reward system to compute accuracy and format rewards, with detailed 
methodologies outlined in Methods section ‘Reward design’. Further-
more, our high-performance RL infrastructure is described in Sup-
plementary Information, section 2.1, ensuring scalable and efficient 
training.

Specifically, we apply the RL technique on the DeepSeek-V3 Base to 
train DeepSeek-R1-Zero. During training, we design a straightforward 
template to require DeepSeek-R1-Zero to first produce a reasoning 
process, followed by the final answer. The prompt template is written 
as below.

“A conversation between User and Assistant. The User asks a question 
and the Assistant solves it. The Assistant first thinks about the reasoning 
process in the mind and then provides the User with the answer. The 
reasoning process and answer are enclosed within <think>...</think> 
and <answer>...</answer> tags, respectively, that is, <think> reasoning 
process here </think><answer> answer here </answer>. User: prompt. 
Assistant:”, in which the prompt is replaced with the specific reason-
ing question during training. We intentionally limit our constraints to 
this structural format, avoiding any content-specific biases to ensure 
that we can accurately observe the natural progression of the model 
during the RL process.

Figure 1a shows the performance trajectory of DeepSeek-R1-Zero 
on the American Invitational Mathematics Examination (AIME) 2024 
benchmark throughout the RL training process, in which the 
average pass@1 score on AIME 2024 shows a marked increase, 
jumping from an initial value of 15.6% to 77.9%. Also, by using the 
self-consistency decoding10, the performance of the model can be 
further improved, achieving an accuracy of 86.7%. This performance 
greatly surpasses the average performance across all human com-
petitors of the AIME. Besides the maths competitions, as shown in 
Supplementary Fig.  8, DeepSeek-R1-Zero also achieves remark-
able performance in coding competitions and graduate-level biol-
ogy, physics and chemistry problems. These results underscore 
the effectiveness of RL in enhancing the reasoning capabilities of  
LLMs.

As well as the progressive enhancement of reasoning capabilities 
during training, DeepSeek-R1-Zero also demonstrates self-evolutionary 
behaviour with RL training. As shown in Fig. 1b, DeepSeek-R1-Zero 
exhibits a steady increase in thinking time throughout training, driven 
only by intrinsic adaptation rather than external modifications. Mak-
ing use of long CoT, the model progressively refines its reasoning, 
generating hundreds to thousands of tokens to explore and improve 
its problem-solving strategies.

The increase in thinking time helps with the autonomous develop-
ment of sophisticated behaviours. Specifically, DeepSeek-R1-Zero 
increasingly exhibits advanced reasoning strategies such as reflective 
reasoning and systematic exploration of alternative solutions provided 
in Extended Data Fig. 1a, substantially boosting its performance on 
verifiable tasks such as maths and coding. Notably, during training, 
DeepSeek-R1-Zero exhibits an ‘aha moment’, shown in Table 1, character-
ized by a sudden increase in the use of the word ‘wait’ during reflections, 
provided in Extended Data Fig. 1b. This moment marks a distinct change 
in reasoning patterns and clearly shows the self-evolution process of 
DeepSeek-R1-Zero.

The self-evolution of DeepSeek-R1-Zero underscores the power and 
beauty of RL: rather than explicitly teaching the model how to solve a 
problem, we simply provide it with the right incentives and it autono-
mously develops advanced problem-solving strategies. This serves as 
a reminder of the potential of RL to unlock higher levels of capabilities 
in LLMs, paving the way for more autonomous and adaptive models 
in the future.

DeepSeek-R1
Although DeepSeek-R1-Zero exhibits strong reasoning capabilities, 
it faces several issues. DeepSeek-R1-Zero struggles with challenges 
such as poor readability and language mixing, as DeepSeek-V3 Base 
is trained on several languages, especially English and Chinese. To 
address these issues, we develop DeepSeek-R1, whose pipeline is illus-
trated in Fig. 2. In the initial stage, we collect thousands of cold-start 
data that exhibit a conversational, human-aligned thinking process, 
as detailed in Supplementary Information, section 2.3.2. RL training 
is then applied with hyperparameters in Methods section ‘Training 
details of the first RL stage’, data details in Supplementary Infor-
mation, section 2.3.1, to improve the model performance with the 
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Fig. 1 | Accuracy and output length of DeepSeek-R1-Zero throughout the 
training process. a, AIME accuracy of DeepSeek-R1-Zero during training. AIME 
takes a mathematical problem as input and a number as output, illustrated in 
Extended Data Table 1. pass@1 and cons@16 are described in Supplementary 
Information, section 4.1. The baseline is the average score achieved by human 

participants in the AIME competition. b, The average response length of 
DeepSeek-R1-Zero on the training set during the RL process. DeepSeek-R1-Zero 
naturally learns to solve reasoning tasks with more thinking time. Note that a 
training step refers to a single policy update operation.
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conversational thinking process and language consistency. Subse-
quently, we apply rejection sampling and SFT once more. This stage 
incorporates both reasoning and non-reasoning datasets into the SFT 
process, as detailed in Supplementary Information, section 2.3.3, ena-
bling the model to not only excel in reasoning tasks but also demon-
strate advanced writing capabilities. To further align the model with 
human preferences, we implement a secondary RL stage designed 
to enhance the helpfulness and harmlessness of the model while 
simultaneously refining its reasoning capabilities. The reward model 
is described in Methods section ‘Reward design’ and RL hyperpa-
rameters are in Methods section ‘Training details of the second RL 
stage’. The total training cost is listed in Supplementary Information,  
section 2.4.4.

We evaluate our models on MMLU11, MMLU-Redux12, MMLU-Pro13, 
DROP14, C-Eval15, IFEval16, FRAMES17, GPQA Diamond18, SimpleQA19, 
C-SimpleQA20, CLUEWSC21, AlpacaEval 2.0 (ref. 22), Arena-Hard23, 
SWE-bench Verified24, Aider-Polyglot25, LiveCodeBench26 (2024-08–
2025-01), Codeforces27, Chinese National High School Mathematics 

Olympiad (CNMO 2024)28 and AIME 2024 (ref. 29). The details of these 
benchmarks are provided in Supplementary Tables 15–29.

Table 2 summarizes the performance of DeepSeek-R1 across several 
developmental stages, as outlined in Fig. 2. A comparison between 
DeepSeek-R1-Zero and DeepSeek-R1 Dev1 reveals substantial improve-
ments in instruction-following, as evidenced by higher scores on the 
IF-Eval and Arena-Hard benchmarks. However, owing to the limited 
size of the cold-start dataset, Dev1 exhibits a partial degradation in 
reasoning performance compared with DeepSeek-R1-Zero, most 
notably on the AIME benchmark. By contrast, DeepSeek-R1 Dev2 
demonstrates marked performance enhancements on benchmarks 
that require advanced reasoning skills, including those focused on 
code generation, mathematical problem solving and STEM-related 
tasks. Benchmarks targeting general-purpose tasks, such as Alpac-
aEval 2.0, show marginal improvement. These results indicate that 
reasoning-oriented RL considerably enhances reasoning capabili-
ties while exerting limited influence on user-preference-oriented 
benchmarks.

DeepSeek-R1 Dev3 integrates both reasoning and non-reasoning 
datasets into the SFT pipeline, thereby enhancing the proficiency of 
the model in both reasoning and general language-generation tasks. 
Compared with Dev2, DeepSeek-R1 Dev3 achieves notable performance 
improvements on AlpacaEval 2.0 and Aider-Polyglot, attributable to the 
inclusion of large-scale non-reasoning corpora and code-engineering 
datasets. Finally, comprehensive RL training on DeepSeek-R1 Dev3 
using mixed reasoning-focused and general-purpose data produced 
the final DeepSeek-R1. Marginal improvements occurred in code 
and mathematics benchmarks, as substantial reasoning-specific RL 
was done in previous stages. The primary advancements in the final 
DeepSeek-R1 were in general instruction-following and user-preference 
benchmarks, with AlpacaEval 2.0 improving by 25% and Arena-Hard 
by 17%.

We also compare DeepSeek-R1 with other models in Supplementary 
Information, section 4.2. Model safety evaluations are provided in 
Supplementary Information, section 4.3. A comprehensive analysis of 
evaluation is provided in Supplementary Information, section 5, includ-
ing a comparison with DeepSeek-V3, performance evaluations on both 
fresh test sets, a breakdown of mathematical capabilities by category 
and an investigation of test-time scaling behaviour. Supplementary 
Information, section 6 shows that the strong reasoning capability can 
be transferred to smaller models.

Table 1 | An interesting ‘aha moment’ of an intermediate 
version of DeepSeek-R1-Zero

Question: If a > 1, then the sum of the real solutions of a a x x+ =−−  is equal to

Response: <think>
To solve the equation a a x x− + = , let’s start by squaring both …

− + = − + =a a x x a a x x( ) .2 2 2⇒

Rearrange to isolate the inner square root term:
⇒ ⇒− = + − + = + − − + − =a x a x a ax x a x x ax x a a( ) 2 ( ) 2 ( ) 02 2 2 2 2 2 4 2 2

…
Wait, wait. Wait. That’s an aha moment I can flag here.
Let’s reevaluate this step by step to identify whether the correct sum can be …
We started with the equation:

− + =a a x x
First, let’s square both sides:
a a x x a x a x2 2− + = + = −⇒

Next, I could square both sides again, treating the equation: …
…

The model learns to rethink using an anthropomorphic tone. This is also an aha moment for 
us, allowing us to witness the power and beauty of RL.
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Fig. 2 | The multistage pipeline of DeepSeek-R1. A detailed background on DeepSeek-V3 Base and DeepSeek-V3 is provided in Supplementary Information, 
section 1.1. The models DeepSeek-R1 Dev1, Dev2 and Dev3 represent intermediate checkpoints in this pipeline.
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Ethics and safety statement
With the advancement in the reasoning capabilities of DeepSeek-R1, 
we deeply recognize the potential ethical risks. For example, R1 can 
be subject to jailbreak attacks, leading to the generation of dangerous 
content such as explosive manufacturing plans, whereas the enhanced 
reasoning capabilities enable the model to provide plans with better 
operational feasibility and executability. Besides, a public model is 
also vulnerable to further fine-tuning that could compromise inherent 
safety protections.

In Supplementary Information, section 4.3, we present a compre-
hensive safety report from several perspectives, including perfor-
mance on open-source and in-house safety evaluation benchmarks, 
and safety levels across several languages and against jailbreak 
attacks. These comprehensive safety analyses conclude that the 
inherent safety level of the DeepSeek-R1 model, compared with other 
state-of-the-art models, is generally at a moderate level (compara-
ble with GPT-4o (2024-05-13)30). Besides, when coupled with the risk 
control system, the safety level of the model is increased to a superior  
standard.

Conclusion, limitation and future work
We present DeepSeek-R1-Zero and DeepSeek-R1, which rely on 
large-scale RL to incentivize model reasoning behaviours. Our results 
demonstrate that pre-trained checkpoints inherently have substan-
tial potential for complex reasoning tasks. We believe that the key to 
unlocking this potential lies not in large-scale human annotation but 
in the provision of hard reasoning questions, a reliable verifier and 
sufficient computational resources for RL. Sophisticated reasoning 
behaviours, such as self-verification and reflection, seemed to emerge 
organically during the RL process.

Even if DeepSeek-R1 achieves frontier results on reasoning 
benchmarks, it still faces several capability limitations, as outlined  
below.

Structure output and tool use
At present, the structural output capabilities of DeepSeek-R1 remain 
suboptimal compared with existing models. Moreover, DeepSeek-R1 
cannot make use of tools, such as search engines and calculators, to 
improve the performance of output. However, as it is not hard to build 
a RL environment for structure output and tool use, we believe that the 
issue will be addressed in the next version.

Token efficiency
Unlike conventional test-time computation scaling approaches, such 
as majority voting or Monte Carlo tree search (MCTS), DeepSeek-R1 
dynamically allocates computational resources during inference 
according to the complexity of the problem at hand. Specifically, it 
uses fewer tokens to solve simple tasks but generating more tokens 
for complex tasks. Nevertheless, there remains room for further opti-
mization in terms of token efficiency, as instances of excessive rea-
soning—manifested as overthinking—are still observed in response 
to simpler questions.

Language mixing
DeepSeek-R1 is at present optimized for Chinese and English, which 
may result in language-mixing issues when handling queries in other 
languages. For instance, DeepSeek-R1 might use English for reasoning 
and responses, even if the query is in a language other than English 
or Chinese. We aim to address this limitation in future updates. The 
limitation may be related to the base checkpoint, DeepSeek-V3 Base, 
which mainly uses Chinese and English, so that it can achieve better 
results with the two languages in reasoning.

Prompting engineering
When evaluating DeepSeek-R1, we observe that it is sensitive to 
prompts. Few-shot prompting consistently degrades its performance. 
Therefore, we recommend that users directly describe the problem and 
specify the output format using a zero-shot setting for optimal results.

Table 2 | Experimental results at each stage of DeepSeek-R1

Benchmark (metric) R1-Zero R1 Dev1 R1 Dev2 R1 Dev3 R1

English MMLU (EM) 88.8 89.1 91.2 91.0 90.8

MMLU-Redux (EM) 85.6 90.0 93.0 93.1 92.9

MMLU-Pro (EM) 68.9 74.1 83.8 83.1 84.0

DROP (3-shot F1) 89.1 89.8 91.1 88.7 92.2

IF-Eval (Prompt Strict) 46.6 71.7 72.0 78.1 83.3

GPQA Diamond (Pass@1) 75.8 66.1 70.7 71.2 71.5

SimpleQA (Correct) 30.3 17.8 28.2 24.9 30.1

FRAMES (Acc.) 82.3 78.5 81.8 81.9 82.5

AlpacaEval 2.0 (LC-winrate) 24.7 50.1 55.8 62.1 87.6

Arena-Hard (GPT-4-1106) 53.6 77.0 73.2 75.6 92.3

Code LiveCodeBench (Pass@1-COT) 50.0 57.5 63.5 64.6 65.9

Codeforces (Percentile) 80.4 84.5 90.5 92.1 96.3

Codeforces (Rating) 1,444 1,534 1,687 1,746 2,029

SWE-bench Verified (Resolved) 43.2 39.6 44.6 45.6 49.2

Aider-Polyglot (Acc.) 12.2 6.7 25.6 44.8 53.3

Maths AIME 2024 (Pass@1) 77.9 59.0 74.0 78.1 79.8

MATH-500 (Pass@1) 95.9 94.2 95.9 95.4 97.3

CNMO 2024 (Pass@1) 88.1 58.0 73.9 77.3 78.8

Chinese CLUEWSC (EM) 93.1 92.8 92.6 91.6 92.8

C-Eval (EM) 92.8 85.7 91.9 86.4 91.8

C-SimpleQA (Correct) 66.4 58.8 64.2 66.9 63.7

Numbers in bold denote that the performance is statistically significant (t-test with P < 0.01).
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Software-engineering tasks
Owing to the long evaluation times, which affect the efficiency of 
the RL process, large-scale RL has not been applied extensively in 
software-engineering tasks. As a result, DeepSeek-R1 has not demon-
strated a huge improvement over DeepSeek-V3 on software-engineering 
benchmarks. Future versions will address this by implementing rejec-
tion sampling on software-engineering data or incorporating asyn-
chronous evaluations during the RL process to improve efficiency.

Beyond specific capability limitations, the pure RL methodology 
itself also presents inherent challenges:

Reward hacking
The success of pure RL depends on reliable reward signals. In this study, 
we ensure reward reliability through a reasoning-domain rule-based 
reward model. However, such dependable reward models are diffi-
cult to construct for certain tasks, such as writing. If the reward signal 
is assigned by a model instead of predefined rules, it becomes more 
susceptible to exploitation as training progresses, which means that 
the policy model may find shortcuts to hack the reward model. Con-
sequently, for complex tasks that cannot be effectively evaluated by 
a reliable reward model, scaling up pure RL methods remains an open 
challenge.

In this work, for tasks that cannot obtain a reliable signal, DeepSeek-R1 
uses human annotation to create supervised data and only conducts 
RL for hundreds of steps. We hope that, in the future, a robust reward 
model can be obtained to address such issues.

With the advent of pure RL methods such as DeepSeek-R1, the 
future holds immense potential for solving any task that can be effec-
tively evaluated by a verifier, regardless of its complexity for humans. 
Machines equipped with such advanced RL techniques are poised to 
surpass human capabilities in these domains, driven by their ability 
to optimize performance iteratively through trial and error. However, 
challenges remain for tasks for which constructing a reliable reward 
model is inherently difficult. In such cases, the lack of a robust feedback 
mechanism may slow progress, suggesting that future research should 
focus on developing innovative approaches to define and refine reward 
structures for these complex, less verifiable problems.

Furthermore, making use of tools during the reasoning process 
holds notable promise. Whether it is using tools such as compilers or 
search engines to retrieve or compute necessary information or using 
external tools such as biological or chemical reagents to validate final 
results in the real world, this integration of tool-augmented reason-
ing could greatly enhance the scope and accuracy of machine-driven 
solutions.
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Methods

GRPO
GRPO9 is the RL algorithm that we use to train DeepSeek-R1-Zero and 
DeepSeek-R1. It was originally proposed to simplify the training process 
and reduce the resource consumption of proximal policy optimization 
(PPO)31, which is widely used in the RL stage of LLMs32. The pipeline of 
GRPO is shown in Extended Data Fig. 2.

For each question q, GRPO samples a group of outputs {o1, o2,…, oG} 
from the old policy πθold

 and then optimizes the policy model πθ by 
maximizing the following objective:
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in which πref is a reference policy, ϵ and β are hyperparameters and Ai 
is the advantage, computed using a group of rewards {r1, r2,…, rG} cor-
responding to the outputs in each group:
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We give a comparison of GRPO and PPO in Supplementary Informa-
tion, section 1.3.

Reward design
The reward is the source of the training signal, which decides the direc-
tion of RL optimization. For DeepSeek-R1-Zero, we use rule-based 
rewards to deliver precise feedback for data in mathematical, coding and 
logical reasoning domains. For DeepSeek-R1, we extend this approach 
by incorporating both rule-based rewards for reasoning-oriented data 
and model-based rewards for general data, thereby enhancing the 
adaptability of the learning process across diverse domains.

Rule-based rewards. Our rule-based reward system mainly consists of 
two types of reward: accuracy rewards and format rewards.

Accuracy rewards evaluate whether the response is correct. For 
example, in the case of maths problems with deterministic results, 
the model is required to provide the final answer in a specified format 
(for example, within a box), enabling reliable rule-based verification of 
correctness. Similarly, for code competition prompts, a compiler can 
be used to evaluate the responses of the model against a suite of prede-
fined test cases, thereby generating objective feedback on correctness.

Format rewards complement the accuracy reward model by enforc-
ing specific formatting requirements. In particular, the model is incen-
tivized to encapsulate its reasoning process within designated tags, 
specifically <think> and </think>. This ensures that the thought process 
of the model is explicitly delineated, enhancing interpretability and 
facilitating subsequent analysis.

Reward = Reward + Reward (4)rule acc format

The accuracy, reward and format reward are combined with the 
same weight. Notably, we abstain from applying neural reward mod-
els—whether outcome-based or process-based-to reasoning tasks. 
This decision is predicated on our observation that neural reward 
models are susceptible to reward hacking during large-scale RL. 

Moreover, retraining such models necessitates substantial computa-
tional resources and introduces further complexity into the training 
pipeline, thereby complicating the overall optimization process.

Model-based rewards. For general data, we resort to reward models 
to capture human preferences in complex and nuanced scenarios. We 
build on the DeepSeek-V3 pipeline and use a similar distribution of pref-
erence pairs and training prompts. For helpfulness, we focus exclusively 
on the final summary, ensuring that the assessment emphasizes the use 
and relevance of the response to the user while minimizing interference 
with the underlying reasoning process. For harmlessness, we evaluate 
the entire response of the model, including both the reasoning process 
and the summary, to identify and mitigate any potential risks, biases or 
harmful content that may arise during the generation process.
Helpful reward model. For helpful reward model training, we first gen-
erate preference pairs by prompting DeepSeek-V3 using the Arena-Hard 
prompt format, listed in Supplementary Information, section 2.2, for 
which each pair consists of a user query along with two candidate 
responses. For each preference pair, we query DeepSeek-V3 four times, 
randomly assigning the responses as either Response A or Response B 
to mitigate positional bias. The final preference score is determined 
by averaging the four independent judgments, retaining only those 
pairs for which the score difference (Δ) exceeds 1 to ensure meaningful 
distinctions. Furthermore, to minimize length-related biases, we ensure 
that the chosen and rejected responses of the whole dataset have com-
parable lengths. In total, we curated 66,000 data pairs for training the 
reward model. The prompts used in this dataset are all non-reasoning 
questions and are sourced either from publicly available open-source 
datasets or from users who have explicitly consented to share their 
data for the purpose of model improvement. The architecture of our 
reward model is consistent with that of DeepSeek-R1, with the addition 
of a reward head designed to predict scalar preference scores.

Reward = RM (Response , Response ) (5)helpful helpful A B

The helpful reward models were trained with a batch size of 256, a 
learning rate of 6 × 10−6 and for a single epoch over the training dataset. 
The maximum sequence length during training is set to 8,192 tokens, 
whereas no explicit limit is imposed during reward model inference.
Safety reward model. To assess and improve model safety, we curated 
a dataset of 106,000 prompts with model-generated responses anno-
tated as ‘safe’ or ‘unsafe’ according to predefined safety guidelines. 
Unlike the pairwise loss used in the helpfulness reward model, the 
safety reward model was trained using a pointwise methodology to 
distinguish between safe and unsafe responses. The training hyper-
parameters are the same as the helpful reward model.

Reward = RM (Response) (6)safety safety

For general queries, each instance is categorized as belonging to either 
the safety dataset or the helpfulness dataset. The general reward, 
Rewardgeneral, assigned to each query corresponds to the respective 
reward defined in the associated dataset.

Training details
Training details of DeepSeek-R1-Zero. To train DeepSeek-R1-Zero, we 
set the learning rate to 3 × 10−6, the Kullback–Leibler (KL) coefficient 
to 0.001 and the sampling temperature to 1 for rollout. For each ques-
tion, we sample 16 outputs with a maximum length of 32,768 tokens 
before the 8.2k step and 65,536 tokens afterward. As a result, both 
the performance and response length of DeepSeek-R1-Zero exhibit a 
substantial jump at the 8.2k step, with training continuing for a total 
of 10,400 steps, corresponding to 1.6 training epochs. Each training 
step consists of 32 unique questions, resulting in a training batch size 
of 512 per step. Every 400 steps, we replace the reference model with 
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the latest policy model. To accelerate training, each rollout generates 
8,192 outputs, which are randomly split into 16 minibatches and trained 
for only a single inner epoch.

Training details of the first RL stage. In the first stage of RL, we set the 
learning rate to 3 × 10−6, the KL coefficient to 0.001, the GRPO clip ratio 
ϵ to 10 and the sampling temperature to 1 for rollout. For each question, 
we sample 16 outputs with a maximum length of 32,768. Each training 
step consists of 32 unique questions, resulting in a training batch size 
of 512 per step. Every 400 steps, we replace the reference model with 
the latest policy model. To accelerate training, each rollout gener-
ates 8,192 outputs, which are randomly split into 16 minibatches and 
trained for only a single inner epoch. However, to mitigate the issue of 
language mixing, we introduce a language consistency reward during 
RL training, which is calculated as the proportion of target language 
words in the CoT.

Reward =
Num(Words )

Num(Words)
(7)language

target

Although ablation experiments in Supplementary Information, 
sction 2.6 show that such alignment results in a slight degradation in 
the performance of the model, this reward aligns with human prefer-
ences, making it more readable. We apply the language consistency 
reward to both reasoning and non-reasoning data by directly adding 
it to the final reward.

Note that the clip ratio plays a crucial role in training. A lower value 
can lead to the truncation of gradients for a large number of tokens, 
thereby degrading the performance of the model, whereas a higher 
value may cause instability during training. Details of RL data used in 
this stage are provided in Supplementary Information, section 2.3.

Training details of the second RL stage. Specifically, we train the 
model using a combination of reward signals and diverse prompt dis-
tributions. For reasoning data, we follow the methodology outlined in 
DeepSeek-R1-Zero, which uses rule-based rewards to guide learning 
in mathematical, coding and logical reasoning domains. During the 
training process, we observe that CoT often exhibits language mixing, 
particularly when RL prompts involve several languages. For general 
data, we use reward models to guide training. Ultimately, the inte-
gration of reward signals with diverse data distributions enables us 
to develop a model that not only excels in reasoning but also assigns 
priority to helpfulness and harmlessness. Given a batch of data, the 
reward can be formulated as

Reward = Reward + Reward + Reward (8)reasoning general language

in which

Reward = Reward (9)reasoning rule

Reward = Reward + Reward (10)general reward_model format

The second stage of RL retains most of the parameters from the 
first stage, with the key difference being a reduced temperature of 
0.7, as we find that higher temperatures in this stage lead to incoher-
ent generation. The stage comprises a total of 1,700 training steps, 
during which general instruction data and preference-based rewards 
are incorporated exclusively in the final 400 steps. We find that more 

training steps with the model-based preference reward signal may lead 
to reward hacking, which is documented in Supplementary Informa-
tion, section 2.5.

Data availability
We provide the data samples used in our rejection sampling and RL 
prompts at https://github.com/deepseek-ai/DeepSeek-R1 (https://
doi.org/10.5281/zenodo.15753193)33. Comprehensive statistics and 
details of our complete data-generation methodology are presented 
in Supplementary Information, section 2.3.

Code availability
Trained weights of DeepSeek-R1-Zero and DeepSeek-R1 are available 
under an MIT license at https://github.com/deepseek-ai/DeepSeek-R1 
(https://doi.org/10.5281/zenodo.15753193)33. The inference script is 
released at https://github.com/deepseek-ai/DeepSeek-V3 (https://
doi.org/10.5281/zenodo.15753347)34. Neural networks were developed 
with PyTorch35 and the distributed framework is based on our internal 
framework HAI-LLM (https://www.high-flyer.cn/en/blog/hai-llm). The 
inference framework is based on vLLM36. Data analysis used Python 
v.3.8 (https://www.python.org/), NumPy v.1.23.1 (https://github.com/
numpy/numpy), Matplotlib v.3.5.2 (https://github.com/matplotlib/
matplotlib) and TensorBoard v.2.9.1 (https://github.com/tensorflow/
tensorboard).
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Extended Data Fig. 1 | Evolution of reasoning-related linguistic features  
in model outputs across training steps. a, Frequency of representative 
reflective terms in model-generated outputs throughout the training process. 
Reflective terms—including ‘wait’, ‘mistake’, ‘however’, ‘but’, ‘retry’, ‘error’, 
‘verify’, ‘wrong’, ‘evaluate’ and ‘check’—were identified and curated by a panel 
of three human experts. Each expert independently proposed a set of words 
indicative of reflective reasoning, which were subsequently consolidated 

through consensus into a final vocabulary list. b, Frequency of the term ‘wait’  
in model outputs over the course of training. This term was virtually absent 
during the initial training stages, appeared sporadically between steps 4,000 
and 7,000 and exhibited a marked increase in frequency after step 8,000. 
These trends suggest the emergence of temporal reasoning or self-monitoring 
behaviour as training progresses.
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Extended Data Fig. 2 | Illustration of the proposed GRPO for RL-based 
training. In the proposed framework, a LLM is used as a policy model to 
generate responses {o1, o2,…, oG} conditioned on a given query q. Each response 
within the group is evaluated by a reward model—either learned (model-based) 
or manually specified (rule-based)—to assign a scalar reward signal. Subsequently, 
GRPO computes the relative advantages of each group member based on their 
assigned rewards. Rather than relying on an explicit value function, as in PPO, 

GRPO directly estimates advantages from the intra-group reward distribution. 
The policy parameters are then updated to maximize the expected reward 
while simultaneously minimizing divergence from a reference policy, typically 
quantified through the KL divergence. By eliminating the need for a separate 
value network, GRPO offers a simplified yet effective alternative to traditional 
actor-critic methods such as PPO.



Extended Data Table 1 | An illustrative example from the AIME dataset

The presented question is sourced from the 2024 AIME. The model is tasked with solving the problem and formatting its answer in a required format (for example, ANSWER). For evaluation,  
a rule-based grading system is used to determine correctness. The output of the model is considered correct if and only if it exactly matches the ground-truth solution.
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